別紙3

作業環境測定の方法

物質名	作業環境測定の方法		作業環境測定の方法の詳細(参考例)			<参考>許容濃度等	
	試料採取方法	分析方法	定量下限	捕集法 (器具、流量、 捕集時間)	分析法及び 検出器	ACGIHの TLV-TWA	日本産業 衛生学会の 許容濃度
①2ーアミノー4ーク ロロフェノール	ろ過捕集方法	高速液体クロマトグラフ 分析方法	3ppb (10L捕集)	硫酸含浸ガラ ス繊維ろ紙 1L/分	高速液体 クロマトグラフ 紫外吸光度検出器	_	_
②1ーブロモブタン	固体捕集方法	ガスクロマトグラフ質量 分析方法	0.093 ppm (1L捕集)	活性炭管 0.1L/分	溶媒脱着 ガスクロマトグラフ質量分析	_	_
同上	固体捕集方法	(加熱脱着)ガスクロマ トグラフ質量分析方法	0.0014ppm (1L捕集)	Tenax管 0.1L/分	加熱脱着 ガスクロマトグラフ質量分析		

注:1ーブロモブタンの測定方法については、捕集時間を10分とした場合の定量上限が、参考例に掲げた1つめの方法(活性炭管による捕集)では4.57ppm、2つめの方法 (Tenax管による捕集)では1.07ppmである。

このため、参考例にならって測定する場合であって、作業環境中の濃度が定量上限を超えるときには、活性炭管による捕集の場合は試料溶液を希釈して測定し、Tenax 管による捕集の場合は捕集流量を小さくして捕集し、スプリット比を大きくして測定することが適当であること。